Schlaue Leute werden durch die Fehler von anderen klug

Weitere Informationen zu den Aufgaben und zum Wettbewerb finden sich unter http://www.wurzel.org/werkstatt.

Aufgabe 4

Es sei $x_1 = 6$ und $x_{n+1} = \sqrt{9,99x_n - 24,95}$. Untersuche die Folge auf Monotonie und Beschränktheit und ermittle gegebenenfalls den Grenzwert.

Lösung

Monotonie: $x_2 = \sqrt{9.99 \cdot 6 - 24.95} \approx 5.915$. Wir stellen fest: $x_2 < x_1$.

Vermutung: Die Folge ist monoton fallend. Beweis durch vollständige Induktion $(A(n): x_{n+1} < x_n)$.

- I. Induktionsanfang n = 1: $x_2 < x_1$ stimmt, siehe oben.
- II. Induktionsschritt $A(n) \rightarrow A(n+1)$

$$A(n+1): \qquad x_{n+2} < x_{n+1} \\ \sqrt{9,99x_{n+1}-24,95} < \sqrt{9,99x_n-24,95} \qquad | \text{Quadrieren} \\ 9,99x_{n+1}-24,95 < 9,99x_n-24,95 \\ 9,99x_{n+1} < 9,99x_n \\ x_{n+1} < x_n \\$$

und dies stimmt laut A(n). Daraus folgt:

Beschränktheit: $S = x_1 = 6$ wegen der Monotonie. Andererseits ist s = 0, denn das Ergebnis einer Quadratwurzel ist eine positive Zahl. Somit gilt: $0 \le x_n \le 6$ für jedes n. Daraus folgt:

Aus (1) und (2) folgt, dass die Folge konvergent ist.

Grenzwertberechnung: Es sei $\lim_{n\to\infty}x_n=g$. Der Grenzwertübergang $n\to\infty$ ergibt

$$g = \sqrt{9,99g - 24,95} \,. \tag{3}$$

Durch Quadrieren erhalten wir $g^2=9.99g-24.95$ oder $g^2-9.99g+24.95=0$. Diese quadratische Gleichung hat als Lösungen $g_1=4.99$ und $g_2=5$. Eine direkte Probe zeigt, dass beide Zahlen die Gleichung (3) erfüllen. Damit gilt $\lim_{n\to\infty}x_n=4.99$ und $\lim_{n\to\infty}x_n=5$.

Bemerkung

Eine konvergente Folge hat aber genau einen Grenzwert.

Widerspruch! – Was ist richtig? Was ist falsch? Warum?